skip to main content


Search for: All records

Creators/Authors contains: "Avery, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 3, 2025
  2. Echinoids are key components of modern marine ecosystems. Despite a remarkable fossil record, the emergence of their crown group is documented by few specimens of unclear affinities, rendering their early history uncertain. The origin of sand dollars, one of its most distinctive clades, is also unclear due to an unstable phylogenetic context. We employ 18 novel genomes and transcriptomes to build a phylogenomic dataset with a near-complete sampling of major lineages. With it, we revise the phylogeny and divergence times of echinoids, and place their history within the broader context of echinoderm evolution. We also introduce the concept of a chronospace – a multidimensional representation of node ages – and use it to explore methodological decisions involved in time calibrating phylogenies. We find the choice of clock model to have the strongest impact on divergence times, while the use of site-heterogeneous models and alternative node prior distributions show minimal effects. The choice of loci has an intermediate impact, affecting mostly deep Paleozoic nodes, for which clock-like genes recover dates more congruent with fossil evidence. Our results reveal that crown group echinoids originated in the Permian and diversified rapidly in the Triassic, despite the relative lack of fossil evidence for this early diversification. We also clarify the relationships between sand dollars and their close relatives and confidently date their origins to the Cretaceous, implying ghost ranges spanning approximately 50 million years, a remarkable discrepancy with their rich fossil record. 
    more » « less
  3. Polynoidae Kinberg, 1856 has five branchiate genera: Branchipolynoe Pettibone, 1984, Branchinotogluma Pettibone, 1985, Branchiplicatus Pettibone, 1985, Peinaleopolynoe Desbruyères & Laubier, 1988, and Thermopolynoe Miura, 1994, all native to deep-sea, chemosynthetic-based habitats. Of these, Peinaleopolynoe has two accepted species; Peinaleopolynoe sillardi Desbruyères & Laubier, 1988 (Atlantic Ocean) and Peinaleopolynoe santacatalina Pettibone, 1993 (East Pacific Ocean). The goal of this study was to assess the phylogenetic position of Peinaleopolynoe , utilizing DNA sequences from a broad sampling of deep-sea polynoids. Representatives from all five branchiate genera were included, several species of which were sampled from near the type localities; Branchinotogluma sandersi Pettibone, 1985 from the Galápagos Rift (E/V “Nautilus”); Peinaleopolynoe sillardi from organic remains in the Atlantic Ocean; Peinaleopolynoe santacatalina from a whalefall off southern California (R/V “Western Flyer”) and Thermopolynoe branchiata Miura, 1994 from Lau Back-Arc Basin in the western Pacific (R/V “Melville”). Phylogenetic analyses were conducted using mitochondrial (COI, 16S rRNA, and CytB) and nuclear (18S rRNA, 28S rRNA, and H3) genes. The analyses revealed four new Peinaleopolynoe species from the Pacific Ocean that are formally described here: Peinaleopolynoe orphanae Hatch & Rouse, sp. nov. , type locality Pescadero Basin in the Gulf of California, Mexico (R/V “Western Flyer”); Peinaleopolynoe elvisi Hatch & Rouse, sp. nov. and Peinaleopolynoe goffrediae Hatch & Rouse, sp. nov. , both with a type locality in Monterey Canyon off California (R/V “Western Flyer”) and Peinaleopolynoe mineoi Hatch & Rouse, sp. nov. from Costa Rica methane seeps (R/V “Falkor”). In addition to DNA sequence data, the monophyly of Peinaleopolynoe is supported by the presence of ventral papillae on segments 12–15. The results also demonstrated the paraphyly of Branchinotogluma and Lepidonotopodium Pettibone, 1983 and taxonomic revision of these genera is required. We apply the subfamily name Lepidonotopodinae Pettibone 1983, for the clade comprised of Branchipolynoe , Branchinotogluma , Bathykurila , Branchiplicatus , Lepidonotopodium , Levensteiniella Pettibone, 1985, Thermopolynoe , and Peinaleopolynoe . 
    more » « less
  4. The four named species of Branchipolynoe all live symbiotically in mytilid mussels (Bathymodiolus) that occur at hydrothermal vents or methane seeps. Analyses using mitochondrial (COI and 16S) and nuclear (ITS) genes, as well as morphology, were conducted on a collection of Branchipolynoe from Pacific Costa Rican methane seeps and West Pacific hydrothermal vents. This revealed five new species of Branchipolynoe, and these are formally described. The new species from Costa Rica live in three species of Bathymodiolus mussels (also new) at depths ranging from 1000 to 1800 m. Branchipolynoe kajsae n. sp. and Branchipolynoe halliseyae n. sp. were found in all three undescribed Bathymodiolus species, while Branchipolynoe eliseae n. sp. was found in Bathymodiolus spp. 1 and 2, and Branchipolynoe meridae n. sp. was found in Bathymodiolus spp. 1 and 3. Hence, Bathymodiolus sp. 1 hosted all four of the new species, while the other two Bathymodiolus hosted three each. Most mussels contained only one specimen of Branchipolynoe; where there was more than one, these were often a female and smaller male of the same species. The newly discovered species from the West Pacific, Branchipolynoe tjiasmantoi n. sp., lives in unidentified Bathymodiolus at depths ranging from 674 to 2657 m from hydrothermal vents in the North Fiji (Fiji) and Lau Basins (Tonga) and also from New Zealand, Vanuatu, and the Manus Basin (Papua New Guinea). The phylogenetic and biogeographical implications of this diversity of Branchipolynoe are discussed. 
    more » « less
  5. Abstract

    Despite the impressive performance of recent marine robots, many of their components are non‐biodegradable or even toxic and may negatively impact sensitive ecosystems. To overcome these limitations, biologically‐sourced hydrogels are a candidate material for marine robotics. Recent advances in embedded 3D printing have expanded the design freedom of hydrogel additive manufacturing. However, 3D printing small‐scale hydrogel‐based actuators remains challenging. In this study, Free form reversible embedding of suspended hydrogels (FRESH) printing is applied to fabricate small‐scale biologically‐derived, marine‐sourced hydraulic actuators by printing thin‐wall structures that are water‐tight and pressurizable. Calcium‐alginate hydrogels are used, a sustainable biomaterial sourced from brown seaweed. This process allows actuators to have complex shapes and internal cavities that are difficult to achieve with traditional fabrication techniques. Furthermore, it demonstrates that fabricated components are biodegradable, safely edible, and digestible by marine organisms. Finally, a reversible chelation‐crosslinking mechanism is implemented to dynamically modify alginate actuators' structural stiffness and morphology. This study expands the possible design space for biodegradable marine robots by improving the manufacturability of complex soft devices using biologically‐sourced materials.

     
    more » « less